機(jī)器學(xué)習(xí)之父Tom Mitchell和漫畫家蔡志忠?guī)p峰碰撞

來源:網(wǎng)絡(luò) 時(shí)間:2017-11-20 14:19:40

機(jī)器學(xué)習(xí)之父Tom Mitchell和漫畫家蔡志忠?guī)p峰碰撞

機(jī)器學(xué)習(xí)之父Tom Mitchell、著名漫畫家蔡志忠和長(zhǎng)城會(huì)創(chuàng)始人文廚(微博)跨界對(duì)談,討論科學(xué)與未來

11月14日,一期特殊的《文談》在杭州舉辦,這期節(jié)目中,長(zhǎng)城會(huì)創(chuàng)始人文廚,對(duì)話機(jī)器學(xué)習(xí)之父、卡內(nèi)基梅隆大學(xué)教授Tom Mitchell與著名漫畫家蔡志忠。

兩位大師級(jí)人物看似就像兩個(gè)在不同平行宇宙中轉(zhuǎn)動(dòng)的星球,Tom Mitchell沉浸在數(shù)據(jù)的世界里;而蔡志忠卻徜徉在漫畫的想象中,二人無任何交集。但人生仿佛在攀登一座高山,當(dāng)你登上頂峰,會(huì)發(fā)現(xiàn)與其他人看到風(fēng)景以及對(duì)世界本質(zhì)的理解有驚人的相似之處。

從對(duì)談中,我們發(fā)現(xiàn),“科學(xué)復(fù)興”已經(jīng)成為了社會(huì)現(xiàn)象,帶來了新一波浪潮,蔡志忠作為漫畫家,對(duì)科學(xué)也保持了常人難以想象的熱情,除了高產(chǎn)漫畫書,他還自學(xué)理論物理學(xué)、數(shù)學(xué),1998年到2008年他閉關(guān)10年40天研究物理,后來出版了《東方宇宙》和《時(shí)間之歌》等科學(xué)書籍與心得,他的動(dòng)畫《天眼傳奇》中就加入了很多物理和數(shù)學(xué)元素,讓故事達(dá)到了全新的境界。

蔡志忠執(zhí)筆并擔(dān)任了動(dòng)畫電影《天眼傳奇》的總導(dǎo)演,將數(shù)學(xué)、物理、哲學(xué)等元素融入到這部動(dòng)畫電影中

而Tom Mitchell也認(rèn)為,機(jī)器學(xué)習(xí)的研究需要更多的跨界力量,機(jī)器學(xué)習(xí)、納米技術(shù)、計(jì)算機(jī)技術(shù)、人文藝術(shù)需要用科學(xué)的方式結(jié)合在一起,用新的方法創(chuàng)造新的科學(xué),才會(huì)衍生出更多的可能性。

Tom Mitchell堅(jiān)信,創(chuàng)造未來的天才科學(xué)家并非天生,而是周遭環(huán)境、成長(zhǎng)的關(guān)鍵節(jié)點(diǎn)中遇到的關(guān)鍵的人、自我認(rèn)知等復(fù)雜因素合力的結(jié)果;這與蔡志忠的想法不謀而合,他認(rèn)為一個(gè)人出生之后,有責(zé)任重生一次,找到心中最喜歡、最拿手的事情做到極致,才會(huì)成功。

不管是科學(xué)家還是藝術(shù)家,他們都在通過科學(xué)的方式尋找宇宙運(yùn)動(dòng)的底層原理,這些原理為人所用,會(huì)產(chǎn)生無法估量的價(jià)值:埃隆·馬斯克一次午夜突然意識(shí)到甲烷-液氧火箭發(fā)動(dòng)機(jī)可以實(shí)現(xiàn)380秒以上的比沖,這樣比沖的火箭足以逃離地球,抵達(dá)火星,這讓他更加堅(jiān)信火星移民計(jì)劃的可行性;喬布斯兒時(shí)看到小牛犢從母親體內(nèi)出來,跌跌撞撞后,可以自己走路,這對(duì)他造成了強(qiáng)烈刺激,原來很多本領(lǐng)不用別人教,很多本領(lǐng)出于本能,自己不用向別人學(xué)習(xí)就可以掌握,這也被他應(yīng)用在了那些改變世界的蘋果產(chǎn)品中。

了解這些底層原理,可以幫助人們像馬斯克和喬布斯那樣,直接跳出漸進(jìn)式改善的思路,直接實(shí)現(xiàn)從零到一的飛躍。這次跨界對(duì)談,從自我定位、創(chuàng)造力、科學(xué)的思考方式、技術(shù)浪潮帶來的影響幾個(gè)問題的討論,為大家撥開層層迷霧,更好地了解宇宙運(yùn)行的底層原理,找到偉大成就背后的驅(qū)動(dòng)力。

文廚:蔡老師最近在研究理論物理學(xué),而且據(jù)說下一部的著作不再是諸子百家這些中國國學(xué)文化里的東西,是要出一本物理方面的書。

蔡志忠:我對(duì)宇宙、金星、恒星、分子、原子、粒子的內(nèi)在運(yùn)轉(zhuǎn)規(guī)律都非常有興趣。西方世界有很多有關(guān)宇宙探索的著作,但我并不認(rèn)為白紙黑字的東西一定是真理,所以我們不能盲目崇拜。物理學(xué)還有很多可以挖掘的地方。

文廚:Tom,你怎么看蔡老師關(guān)于物理的觀點(diǎn)?

Tom Mitchell:如果有可能的話,可以把這些想法寫成一本書的話,會(huì)幫助大家以一種更嶄新的方式去理解世界。我想這是一個(gè)非常有創(chuàng)意、有價(jià)值的一種方式,我希望可以看到這本書的英文版本。

文廚:我想請(qǐng)問兩位怎么看待科學(xué)精神的本質(zhì),相信藝術(shù)家和科學(xué)家會(huì)有不同的解讀,先請(qǐng)科學(xué)家解讀。

Tom Mitchell:現(xiàn)在我覺得科學(xué)技術(shù)發(fā)展進(jìn)步更像是社會(huì)現(xiàn)象,開始的時(shí)候不是這樣的,比如人工智能,30年的時(shí)間跨度,1987年到2017年,有很多科技浪潮,或者范式的轉(zhuǎn)移,很多傳統(tǒng)的東西都被淘汰顛覆,有一段時(shí)間神經(jīng)網(wǎng)絡(luò)很流行,1997年,神經(jīng)網(wǎng)絡(luò),有人做了重要的研究,1997年大家覺得神經(jīng)網(wǎng)絡(luò)做不下去了,接下來我們做了基于規(guī)則的方法,通過這種規(guī)則,我們可以更好地去了解,這里數(shù)據(jù)很重要?,F(xiàn)在的浪潮就是,除了個(gè)別人以外,沒有人去做神經(jīng)網(wǎng)絡(luò),但2008、2009年,神經(jīng)網(wǎng)絡(luò)又回來了,今天的深度神經(jīng)網(wǎng)絡(luò),是之前的神經(jīng)網(wǎng)絡(luò)和一些新方法的結(jié)合,這些歷史性波動(dòng)讓我看到了高潮與低谷,產(chǎn)生了一些循環(huán)的社會(huì)現(xiàn)象,也有一些負(fù)面影響。這就是我對(duì)科學(xué)精神的整體看法。

蔡志忠:科學(xué)的精神就是讓人通過我們的智慧,去理解宇宙運(yùn)作的底層規(guī)律。而我們能夠利用這種規(guī)律為人所用,所以科學(xué)當(dāng)然是目前最有價(jià)值的。

文廚:高山大學(xué)的使命是“科學(xué)復(fù)興”,霍金教授給到TA的英文表述是 “New Scientific Renaissance”,今天借此機(jī)會(huì),也想請(qǐng)二位來分享一下,“科學(xué)復(fù)興”是什么?

Tom Mitchell:我覺得我們確實(shí)在“科學(xué)復(fù)興”當(dāng)中。從字面理解應(yīng)該是“重生”,“復(fù)興”類似于重生或者新生。現(xiàn)在我們正處于這樣的階段,我們站在過去的成就之上,獲取更多的創(chuàng)造力。我覺得有兩條不同的道路可以走:一方面是多學(xué)科、跨學(xué)科領(lǐng)域的合作,不同的行業(yè)、不同的領(lǐng)域,納米技術(shù)、計(jì)算機(jī)技術(shù)、人文技術(shù)都可以用科學(xué)的方式結(jié)合在一起,用新的方式創(chuàng)造新的科學(xué),讓科學(xué)的火花飛濺。

另外一種力量,我可以很驕傲、很自傲的說,這種力量就是機(jī)器學(xué)習(xí)。因?yàn)樵谝越?jīng)驗(yàn)為主的數(shù)據(jù)依賴型的通用型、原生的科學(xué)當(dāng)中,我們已經(jīng)到了這樣的階段,就是歷史性依賴經(jīng)驗(yàn)的科學(xué),已經(jīng)獲取了非常多的規(guī)則和規(guī)律?;谥鞍l(fā)現(xiàn)的規(guī)律,我們可以有計(jì)算機(jī)的算法幫助我們更好的進(jìn)行新的規(guī)律的探索,并衍生出更多的可行性。

這是兩種力量推動(dòng)“科學(xué)復(fù)興”,一方面是多學(xué)科跨界融合激發(fā)出來的火花,另一方面就是讓機(jī)器學(xué)習(xí)繼續(xù)研究過去積累的歷史數(shù)據(jù),衍生出新的可能性。

蔡志忠:“科學(xué)復(fù)興”就像西方的文藝復(fù)興,這是價(jià)值。像米開朗基羅一樣,一個(gè)家族就可以沖擊整個(gè)歐洲。我認(rèn)為,“科學(xué)復(fù)興”在中國,以中國來說談不上復(fù)興。因?yàn)檫^去中國不重視科學(xué),只重視科舉考試。像沈括的《夢(mèng)溪筆談》里談的一樣,不要提四大發(fā)明。很多年前,中國在物理方面是領(lǐng)先的,如果在中國,應(yīng)該是科學(xué)自主。不要看到西方的書才知道是真理,看到之后,不要相信經(jīng)典,他只是藝術(shù)家的故事會(huì)。聽了“真理”以后,要自己思考一下,懂了才相信,科學(xué)更是這樣。錯(cuò)誤的理論和信息像一道高墻,不要讓這道高墻把自己封閉起來。

文廚:Tom,你的第一本書叫《機(jī)器學(xué)習(xí)》,這是機(jī)器學(xué)習(xí)領(lǐng)域最早的教科書之一,早期很多人都在用你的這本書了解機(jī)器學(xué)習(xí)領(lǐng)域的一些基礎(chǔ)知識(shí)。聽說,你又正在準(zhǔn)備寫第二本書,我們相信這本書一定又是一本影響深遠(yuǎn)的教科書,你是否可以透露一下新書的一些觀點(diǎn)?

Tom Mitchell:我的第二本書寫得很慢,因?yàn)楸M管慢,還是有進(jìn)展的?,F(xiàn)在我面臨兩方面的挑戰(zhàn),希望獲得幫助:

一方面的挑戰(zhàn)是我覺得這還是一本機(jī)器學(xué)習(xí)的書,機(jī)器學(xué)習(xí)領(lǐng)域目前正處于非常大的轉(zhuǎn)彎期,深度神經(jīng)網(wǎng)絡(luò)的方向,已經(jīng)把原有的一些舊的算法都替代掉了。我個(gè)人的看法它還要走很長(zhǎng)的一段路才可以替代其他的算法,這里就不跟大家講更多的技術(shù)細(xì)節(jié)了。如果這樣走的話,在這個(gè)位置寫一本書不錯(cuò),但現(xiàn)在的技術(shù)發(fā)展差不多要轉(zhuǎn)彎了,我還在寫這本書,這不也許不是很好,這讓我有點(diǎn)奇怪。

但是,另外,要學(xué)一個(gè)事情,最好的學(xué)習(xí)方法就是學(xué)著去教課程。只要去教,一定會(huì)學(xué)得更加認(rèn)真。另外,我之所以寫得慢,是因?yàn)槎昵皩懕緯苋菀?。我不知道今天寫一本書?huì)被擺到哪里去,我是不是要為每個(gè)章節(jié)做視頻課程,是不是需要組織每個(gè)章節(jié)的讀者到一個(gè)討論平臺(tái)上討論,但書的形式,二十年前和現(xiàn)在已經(jīng)發(fā)生了很大的變化,這也對(duì)我形成了很大的挑戰(zhàn)。

機(jī)器人索菲亞成為了沙特阿拉伯的公民,她正在獲得越老越多的公民權(quán)利和影響力

文廚:最近,有一個(gè)叫索菲亞的機(jī)器人獲得了沙特阿拉伯的公民身份。我們應(yīng)該怎樣看機(jī)器人獲得同樣或者更好的公民權(quán)利這個(gè)問題?

蔡志忠:我猜每一個(gè)世紀(jì)有很多智者們?cè)陬A(yù)估下一個(gè)世界會(huì)發(fā)生什么,每一個(gè)世紀(jì)都有錯(cuò)估的地方,因?yàn)槿祟惖倪M(jìn)步比當(dāng)代的智者預(yù)見還要大,我想人類的進(jìn)步比我們預(yù)估要大,某一天機(jī)器人不可以投票嗎?機(jī)器人不可以學(xué)習(xí)嗎?機(jī)器人會(huì)遵守很多的法則,我期待著、相信著未來可能性更大。

Tom Mitchell:我想現(xiàn)在還太早。因?yàn)槲疫€不希望他們投票,不過,我確實(shí)希望他們可以交稅。在未來的十年當(dāng)中,比如說自動(dòng)駕駛汽車,我覺得我不會(huì)說他們是公民,但可能會(huì)涉及到法律問題,比如說有由誰負(fù)責(zé),比如說自動(dòng)駕駛汽車撞了人或者是撞了車,嚴(yán)格意義上講汽車的生產(chǎn)商要負(fù)法律責(zé)任,如果這輛車要負(fù)責(zé),怎么懲罰,怎么進(jìn)行法律判斷呢?這些問題很快會(huì)浮現(xiàn)出來,這是關(guān)于道德、關(guān)于倫理的問題。

文廚:AlphaGo Zero讓人工智能又一次成為了焦點(diǎn)事件,通俗的講,它已經(jīng)開始自學(xué)成才了,不需要參考人類產(chǎn)生的數(shù)據(jù)也可以進(jìn)行一定程度的學(xué)習(xí)了,我們想先聽聽蔡老師怎么看這樣的問題?

蔡志忠:我自己也很關(guān)心時(shí)事,AlphaGo Zero通過自我學(xué)習(xí)找到規(guī)律,其實(shí)找規(guī)律是很簡(jiǎn)單的。但我不擔(dān)心機(jī)器人會(huì)超越人類,可能會(huì)超越大部分人的智慧,機(jī)器沒有辦法創(chuàng)作和創(chuàng)想的,比如,笛卡爾每天中午才起床,他身體不好,經(jīng)常躺在床上,看天花板上的格子,看格子聯(lián)想如何用幾何學(xué),然后他把一個(gè)當(dāng)橫坐標(biāo),一個(gè)當(dāng)縱坐標(biāo),所以可以寫出函數(shù),寫出X和Y的平方,當(dāng)X等于2的時(shí)候,Y等于4。如果是這樣的問題,讓機(jī)器人證明橫豎是不可能的,機(jī)器人應(yīng)該要幾百年才可以做到。從過去的規(guī)律,證明一個(gè)人的妄想是錯(cuò)的。

Tom Mitchell:我想游戲本身就是一種非天然的行為。實(shí)際上,機(jī)器人的發(fā)明是挑戰(zhàn)我們的一些既有想法,或者說能做一些目前我們做不了的事情,這也是應(yīng)他們非常有趣的一點(diǎn)。我們做不了的就是分析一些很大的數(shù)據(jù),因?yàn)檫@對(duì)腦力是很大的挑戰(zhàn),電腦處理成倍的數(shù)據(jù)要比人腦好很多。這些問題要從既有的事情當(dāng)中,可能有一些既定的步驟,是我們可以采用的步驟。接下來就是要模擬這個(gè)步驟,模擬100次,完全無錯(cuò)的模擬。但腦子通常做的就是在這里,我們看到了,然后學(xué)習(xí),然后我們講,然后我們理解句子的意思,下一步應(yīng)該說什么。我想這是自然智能、天然智能。

但我并不覺得AlphaGo Zero本身是人工智能是巨大的一步。對(duì)于人來說,我們知道電腦是可以完成一些機(jī)械的步驟,可以做復(fù)雜的事情,也可以很快的做。他們也可以戰(zhàn)勝人,因?yàn)槿说募记珊瓦^程、處理步驟和它完全不一樣。但是,我對(duì)此更激動(dòng)的是過去的幾年中,電腦從幾乎盲目的階段,到現(xiàn)在可以像人一樣,可以看到一些情況,可以根據(jù)情境做出反應(yīng)。

文廚:文談的直播平臺(tái)粉絲問自動(dòng)駕駛、無人駕駛還需要多久才可以大規(guī)模上路?

Tom Mitchell:首先,如果我們畫一個(gè)時(shí)間軸,什么時(shí)候可以達(dá)成全自動(dòng)駕駛,其實(shí)局限絕對(duì)不會(huì)是直角,一定是斜向上的曲線。因?yàn)樽詣?dòng)駕駛某些領(lǐng)域比較容易,比如說高速公路上,道路的環(huán)境比較好,路上的標(biāo)線、車道都畫得非常標(biāo)準(zhǔn)。比較困難的那些場(chǎng)景就包括鄉(xiāng)村、泥濘的道路,一些不規(guī)則之路等等。所以,在自動(dòng)駕駛實(shí)現(xiàn)的過程中,不同的部分是有不同的難度。所有的場(chǎng)景都用自動(dòng)駕駛實(shí)現(xiàn),還需要很長(zhǎng)的時(shí)間。

十年之內(nèi),高速公路上會(huì)實(shí)現(xiàn)無人駕駛,現(xiàn)在差不多有了。這就產(chǎn)生了一個(gè)很有意思的問題。有人會(huì)問你愿不愿意買一臺(tái)只能在標(biāo)準(zhǔn)道路上駕駛的汽車,這對(duì)Uber來說非常關(guān)鍵,因?yàn)樗麄冋谖宜诘某鞘衅テ澅ら_設(shè)了一個(gè)技術(shù)中心,有很多工程師和技術(shù)專家研究自動(dòng)駕駛汽車,他們?cè)谄テ澅さ穆访嫔献鰷y(cè)試,當(dāng)然人還是坐在車?yán)?,隨時(shí)準(zhǔn)備接管方向盤。

所以,這個(gè)問題又到了如何搞定最困難的部分,他們的意思是無所謂,不需要去過多關(guān)注這些困難。要從這邊開到那邊,但自己搞不定,就叫個(gè)Uber或者滴滴,他們會(huì)送一部車過來,把你送到高速公路上或者是標(biāo)準(zhǔn)道路上,最后結(jié)果會(huì)怎么樣?我想會(huì)來一部自動(dòng)駕駛的車,他們說不是這樣的,誰會(huì)愿意中途換車?解決方案是人跳出來,然后車自己去目的地,然后駕駛員跳出去,車自動(dòng)駕駛,到不能自動(dòng)駕駛的區(qū)域。

這樣的話,自動(dòng)駕駛會(huì)在標(biāo)準(zhǔn)道路上很快得到大規(guī)模的使用,特別像滴滴、Uber這樣提供出行解決方案的公司,以及他們?cè)谧詣?dòng)駕駛和人工駕駛之間找到很好的結(jié)合點(diǎn),特別適合無人駕駛大規(guī)模應(yīng)用。所以,我覺得比較快,大概五年左右,雖然不是100%的無人駕駛,但是會(huì)部分會(huì)實(shí)現(xiàn)商業(yè)化。

文廚:目前機(jī)器學(xué)習(xí)談到最基礎(chǔ)的需求都是來自數(shù)據(jù),但現(xiàn)在的問題是數(shù)據(jù)都由一些大公司控制著,在可見的未來中,你覺得機(jī)器學(xué)習(xí)可能不再這么被依賴嗎?或者說市場(chǎng)上有其他小公司也會(huì)有這樣的機(jī)遇或者可能性?

Tom Mitchell:這個(gè)問題非常好。我很快地講一下,我有兩個(gè)想法。首先,我同意你的想法!數(shù)據(jù)確實(shí)在個(gè)別公司的手中,這對(duì)于經(jīng)濟(jì)發(fā)展是一種抑制。如果我們希望經(jīng)濟(jì)快速發(fā)展,應(yīng)該減少壁壘,讓企業(yè)實(shí)現(xiàn)公平競(jìng)爭(zhēng)。數(shù)據(jù)目前已經(jīng)成為了準(zhǔn)入的壁壘,它已經(jīng)抑制了一些創(chuàng)業(yè)公司加入競(jìng)爭(zhēng)當(dāng)中。政府有機(jī)會(huì)能夠建立政策,實(shí)現(xiàn)數(shù)據(jù)分享、數(shù)據(jù)銷售、數(shù)據(jù)營銷、數(shù)據(jù)經(jīng)濟(jì)等等,但現(xiàn)在還不清楚真正合適的政策是什么,同樣對(duì)于新的公司或者是創(chuàng)業(yè)公司,他們也可以創(chuàng)建自己在數(shù)據(jù)上獨(dú)有的特性,就可以在一個(gè)獨(dú)特角度成為寡頭公司。

第二點(diǎn),你是對(duì)的,如果想了解未來機(jī)器學(xué)習(xí)的發(fā)展,你需要想一想人是如何學(xué)習(xí)的,現(xiàn)在電腦還沒有做到這一點(diǎn)。人通過各種方式,通過看,通過書學(xué)習(xí),通過相互之間的溝通,或者你有一個(gè)指導(dǎo)人,他可以告訴你,你如何做研究等等,成為你的導(dǎo)師。在未來五到十年當(dāng)中,會(huì)看到范式不斷的變化,就像和人的交互一樣,它會(huì)以另外一種方式受到影響,這會(huì)是非常有建設(shè)性的。

我們可以意識(shí)到我們陷入了一種固定思維模式當(dāng)中,唯一能做的就是我們所說的語音交互,這就是我們?cè)?jīng)用手機(jī)做的事情。比如說我告訴阿里巴巴的機(jī)器人說“剛才聽到的是這個(gè)聲音就是我的狗在叫”,因?yàn)樗恢?,我就教它,告訴它只要接下來聽到狗的聲音,就說“沒關(guān)系,沒事,都挺好的”,如果可以做到這一點(diǎn),就會(huì)成為一種新的選擇。未來以指令為基礎(chǔ)的機(jī)器學(xué)習(xí)會(huì)是很大的增長(zhǎng)機(jī)會(huì)。

我們接下來要加速計(jì)算機(jī)識(shí)別某一種語言的速度,我們不需要人去學(xué)習(xí)編程的語言,而是希望電腦、機(jī)器可以習(xí)得人的自然語言,人可以通過指導(dǎo)進(jìn)行編程。

現(xiàn)在只有0.1%的人會(huì)編程,大家想一想,99%的人類都可以進(jìn)行編程,他們可以為各種各樣奇異的場(chǎng)景創(chuàng)造出無窮無盡的方案,這個(gè)創(chuàng)造力是無法想象。我們一定會(huì)達(dá)到那一步,但現(xiàn)在除了我們?cè)趯戇@方面的論文,還沒有別人在進(jìn)行研究,我覺得這是不可避免的趨勢(shì),如果一旦發(fā)生,這將是巨大的變化。

文廚:有生之年,我們要留下一些有趣的嘗試,文談的對(duì)手就是司馬遷。我問一下蔡志忠老師,你的對(duì)手是誰?

蔡志忠:剛開始畫漫畫的時(shí)候,我的對(duì)手是日本的漫畫家,他們畫得非常精致,就像武士道,對(duì)所有漫畫家造成了挑戰(zhàn)。36歲的時(shí)候,我去了日本,是要完成兒時(shí)的夢(mèng)想。后來我學(xué)會(huì)了思考,知道自己應(yīng)該畫什么東西。

Tom Mitchell:這個(gè)問題太有意思了,我從來沒有這么想過。因?yàn)閷?duì)科學(xué)家來說,并沒有什么對(duì)手,我們的目標(biāo)是為了要找到真相,我做的工程也是為了建造一些能夠改變現(xiàn)實(shí)的東西。所以,在我看來并沒有什么對(duì)手,只有等待我們發(fā)現(xiàn)的事物而已。

文廚:一個(gè)人在很小的時(shí)候就意識(shí)到自己想做什么是非常幸運(yùn)的。但現(xiàn)在我們處于一個(gè)信息爆炸的時(shí)代,周圍有太多的噪音,你是否可以給年輕人一些建議,如何在這樣的環(huán)境中找到合適的方向呢?

Tom Mitchell:我非常喜歡你的問題,首先,我不太確定現(xiàn)在的兒童所處的年代是不是比我們所處的年代更糟糕。當(dāng)時(shí)我處在披頭士的年代,家長(zhǎng)都覺得他們是不好的東西。但他們正是創(chuàng)意的來源,你可能會(huì)說現(xiàn)在的成長(zhǎng)環(huán)境和那時(shí)候不一樣,但不能說現(xiàn)在就不好?,F(xiàn)在他們處在一個(gè)信息爆炸的年代,會(huì)使他們和我們不太一樣,但我們也不太清楚未來的發(fā)展方向是什么。

同樣,我想對(duì)于兒童和成人來說,有獨(dú)處的時(shí)光很重要,這雖然會(huì)讓他們感到很無聊,但他們會(huì)被迫去思考一些事情,我想這是有益的。

文廚:網(wǎng)友們有問題了,這個(gè)是問蔡老師的,現(xiàn)在互聯(lián)網(wǎng)快速變化的狀態(tài),有沒有什么建議幫助年輕人找到自我和自處的方法?

蔡志忠:我也天天在使用電腦,也看互聯(lián)網(wǎng)的東西,但是以自我為主,但我沒有上癮。所以,一個(gè)人在變化時(shí)空中,有衣食住行的需求,一個(gè)人有強(qiáng)烈的自我和哲學(xué)價(jià)值觀就完全不會(huì)受到環(huán)境的影響。所以,我自己不會(huì)因?yàn)橥獠苛餍惺裁?,我就去湊熱鬧。有些人講了就覺得自己很流行了。一個(gè)人從一開始有自己的人生價(jià)值觀,這是一種生活方式。

文廚:現(xiàn)在大家都在講究知識(shí)的傳承,蔡老師一直在用漫畫的形式把國學(xué)文化傳給下一代,影響下一代。我們一直希望關(guān)心的問題是,我們?nèi)绾伟褜W(xué)問傳授給下一代?

蔡志忠:很多人都說中國的傳統(tǒng)文化在臺(tái)灣,其實(shí)是在于家庭。我教我女兒就像我爸爸教我一樣。我和女兒去餐廳,服務(wù)員給菜單,我說“說謝謝”,她不說,我就一直讓她說“謝謝”。點(diǎn)餐之后,服務(wù)員送了一盤菜,她不回答,我就敲桌子,她就說“謝謝”。所以一個(gè)父母要以身作則,如果父母帶小孩闖紅燈,他怎么會(huì)不闖紅燈呢?如果父母帶小孩搶位置,小孩怎么會(huì)不搶位?如果父母打電話,講另外一個(gè)朋友壞話,你以為小孩不會(huì)錯(cuò)亂嗎?所以什么樣的父母就會(huì)教出什么樣的小孩,就像我說天才不是天生的,如果哪一對(duì)智商150的父親生的小孩,最后讓狼撫養(yǎng)了,那他只會(huì)學(xué)狼一樣叫。

我六十歲開始收弟子,我想收71個(gè)弟子。他們的想法一定和我一樣,因?yàn)橄敕ú灰欢?,不?huì)起來。所以,我的哲學(xué)觀會(huì)傳給弟子,我會(huì)告訴他們:一個(gè)人來到世間如何制定人生計(jì)劃;一個(gè)人在世界當(dāng)中如何自持,如果有中心思想,就不會(huì)被時(shí)代的潮流所淹沒,我的弟子跟著我,也會(huì)跟我一樣。弟子也會(huì)很好地把我的思想傳承下去。

文廚:除了找到對(duì)手,為了激勵(lì)自我突破,我還進(jìn)行了一些有趣的嘗試,比如找到各個(gè)行業(yè)80歲以上的智者對(duì)話,我很幸運(yùn),“看”到了星云大師、詩人余光中、TED大會(huì)創(chuàng)始人Richard Wurman以及以色列前總理佩雷斯,“見”到他們的思維方式異于常人,都在各自領(lǐng)域達(dá)到了極致的狀態(tài)。您認(rèn)為這些特質(zhì)是否都是先天決定的呢?

蔡志忠:我之前是鄉(xiāng)下人,沒怎么讀書,不好意思和一些人碰面。后來發(fā)現(xiàn)當(dāng)你在某個(gè)領(lǐng)域成為TOP的時(shí)候,接觸面就很廣泛的。比如我會(huì)有機(jī)會(huì)見到,很多人唱歌都很好,比如說滾石的老板。所以,當(dāng)你成為某一個(gè)行業(yè)的TOP,其他的TOP都會(huì)和你成為朋友。我從小就把漫畫當(dāng)成摯愛,當(dāng)一個(gè)人找到最喜歡、最拿手的事物,做到極致,無論做什么行業(yè)都一定會(huì)成功。

Tom Mitchell:我認(rèn)為這些并不是天生的。對(duì)我個(gè)人來說,我的父母親對(duì)我起著非常關(guān)鍵的作用。我一生當(dāng)中,我父母一直在我合適的時(shí)候問我合適的問題,從而引導(dǎo)我成為了一個(gè)能夠了解人們是怎樣工作的,智能是怎么工作的人?;谶@些,我在孩童時(shí)期接受來自父母的問題,后來被塑造成了一個(gè)愿意求知的人,所以在我看來,我很幸運(yùn),有著這樣的童年。也很幸運(yùn)在人生的旅途當(dāng)中遇到了很多很好的導(dǎo)師,同時(shí)可以有幫我做科學(xué)研究的合適的大腦。

科學(xué)家與漫畫家相遇,既是智慧的碰撞,又是發(fā)自內(nèi)心的愉悅。

文廚:最近一年半年我一直在思考創(chuàng)造力的問題。怎樣可以有這種超強(qiáng)的創(chuàng)造力?今天人工智能出現(xiàn)了,我想人工智能如何幫助人類形成更強(qiáng)、更高的創(chuàng)造力?

蔡志忠:創(chuàng)造是特別大的叛逆,所以一定要顛覆過去。像我的女兒,我問我女兒長(zhǎng)大要做什么,她說“絕對(duì)不做漫畫家”,因?yàn)槁嫾姨珶o聊了,我說那做什么,她說設(shè)計(jì)家。這時(shí)候逼她,要設(shè)計(jì)什么?因?yàn)槲伊⒅居谧鲆患ゴ蟮氖虑?,但也沒有提到怎么做,所以一直逼她。我說,為什么漢堡要圓的,這就是顛覆。任何顛覆就是倒過來想的。一般人不太會(huì)倒過來思考問題,其實(shí)我想了很多。一種是像計(jì)算1月1號(hào)到7月6號(hào)之間有多少天這樣的問題,你一定要思考能力很強(qiáng),很快,這非常重要。思考是要找線頭,線頭一拉可以找到。打一個(gè)比較低級(jí)的例子,一個(gè)人踩到大便,當(dāng)然很倒霉,像剛才我的助理搬椅子,他大叫一聲,我說椅子都沒有叫,你叫什么?是她的腳去撞椅子的腳。一個(gè)人早上起來很高興,很漂亮,然后皮鞋一踩,那個(gè)人就說很倒霉,其實(shí)對(duì)大便來說很倒霉,很多事情要倒過來想。

Tom Mitchell:我快速地講一點(diǎn),我們總是感覺現(xiàn)在是全球最缺乏創(chuàng)造力的時(shí)代,但事實(shí)上這并不一件確切的事情,如果我們看看數(shù)據(jù)。2006年的時(shí)候還沒有智能手機(jī),智能手機(jī)出現(xiàn)后讓這十年的創(chuàng)造力非常豐富。想想這十年之間全球發(fā)生了這么多事情,所以我不覺得創(chuàng)造力已經(jīng)枯竭了??偸呛芏嗳讼脒@件事情,但這種想法是錯(cuò)誤的。

另外,我想說的是關(guān)于創(chuàng)造力,科學(xué)工程領(lǐng)域不同于藝術(shù)領(lǐng)域,對(duì)科學(xué)工程領(lǐng)域的關(guān)鍵就是要探求真理,比如說要學(xué)習(xí),就要了解大腦當(dāng)中有多少神經(jīng)元在工作,這就是科學(xué)的本質(zhì)。而舉個(gè)例子,要研究一種新的大腦的植入體,要找的并不是一個(gè)真相,而是為了從已有的真相當(dāng)中創(chuàng)造一些新的東西,所以這兩類要分開看,這就是我說為什么要科學(xué)和工程分開。

科學(xué)和工程兩個(gè)領(lǐng)域都需要?jiǎng)?chuàng)新,而創(chuàng)新的關(guān)鍵就是持續(xù)尋找傳統(tǒng)的錯(cuò)誤,并把它修正過來,找到了錯(cuò)誤的,就找到了一個(gè)創(chuàng)造性的突破口。很多人都認(rèn)為不可能對(duì)自然語言,對(duì)電腦進(jìn)行編程,但一旦突破了,這就是一個(gè)很好的創(chuàng)新。

文廚:其實(shí),從教育上講,我們都希望孩子長(zhǎng)大的不是靠技能,而是靠創(chuàng)造性。將來很多工作會(huì)被人工智能取代,所以我們希望工作當(dāng)中有更多的創(chuàng)造性成分。創(chuàng)造力在藝術(shù)與科學(xué)兩大領(lǐng)域有哪些是共性與不同點(diǎn)?

Tom Mitchell:我想快速的講一下創(chuàng)意。其實(shí)我剛才想到一個(gè)問題,有一位非常著名的爵士樂手,有人問他,你怎么創(chuàng)造出這么有創(chuàng)造性的爵士音樂呢?他說,首先要學(xué)習(xí)技巧,然后不斷的練習(xí),學(xué)習(xí)更多的技能,練習(xí)、練習(xí)、練習(xí),然后就把它都忘記了。然后就進(jìn)入了下一個(gè)階段。

我一直記得這句話,我想它包含了兩種道理:如果不了解自己的行業(yè),不了解自己的技能,就很難做到有創(chuàng)意,比如說在技術(shù)行業(yè)一定要了解這些算法,一定要了解情況,了解自己的局限性在哪里,只有這樣能把自己的作業(yè)做好,把技能學(xué)習(xí)好、操作好,接下來就是一個(gè)新的階段了。我想,一個(gè)音樂藝術(shù)家所說的話也在技術(shù)領(lǐng)域可應(yīng)用,這是兩者之間的橋梁,蔡老師,不知道你怎么看?

蔡志忠:我以為再智能的機(jī)器人也不會(huì)比我畫得好,這是肯定的。人們喜歡我的漫畫,最終還是因?yàn)楣适滦院軓?qiáng),而不僅僅是畫得好那么簡(jiǎn)單。

我不同意三個(gè)臭皮匠抵過一個(gè)諸葛亮,100個(gè)臭皮匠還是臭皮匠,三個(gè)諸葛亮是三個(gè)諸葛亮。跨界是最大的空間,跨界越大空間越大。在臺(tái)灣,漫畫家的成功率千份之一,1000個(gè)只有一個(gè)可以成功,剩下的999個(gè)都是去報(bào)社上班,閑暇之余畫漫畫。漫畫家的成功率不是很高,漫畫家要懂?dāng)?shù)學(xué),數(shù)學(xué)要懂也很難。漫畫無外乎故事。漫畫可以畫數(shù)學(xué),可以畫哲學(xué),也可以畫上一代。所以,我在四十個(gè)國家出過書,《莊子》、《老子》,我用當(dāng)今的語言,把當(dāng)今很好的內(nèi)容透過漫畫表達(dá)出來,所以,認(rèn)為跨界合作就是一個(gè)創(chuàng)新。

文廚:你3歲就開始畫漫畫,是否是因?yàn)椴粩嗟淖駨倪@種天性,才有今天的成就?

蔡志忠:我爸爸、媽媽生了五個(gè)小孩,我們五個(gè)人完全不一樣。我大哥是乖寶寶,我自己是漫畫家,我的姐姐和妹妹都很一般的。我們的父母只生下我們的肉體,每個(gè)人出生之后,都有義務(wù)重生一次。例如有100萬人買了蘋果電腦,第二天每個(gè)人電腦都不一樣,有的人玩游戲,有的人聊天,我是用來畫畫。如果有一個(gè)小孩有一天知道自己的老爸是籃球明星,就像我小兄弟在墻壁上掛了120張灌籃高手,所以他小時(shí)候就開始學(xué)籃球,他想拿獎(jiǎng)杯是后天努力的。

我也常常教學(xué)生,一個(gè)學(xué)生有沒有進(jìn)步,從一個(gè)地方就可以看出來,這不是從一個(gè)水準(zhǔn)到達(dá)另一個(gè)水準(zhǔn)的提升,而是把壞的習(xí)慣降低了多少。有個(gè)人抽煙很兇,后來不抽了,天天酗酒后來不喝了,一個(gè)人天天賭錢后來不賭了。

Tom Mitchell:我也同意沒有生下來就是天才的人。但是,我覺得確實(shí)有人走比較合理的人生道路,并且這種人生道路上,他們更加執(zhí)著,在這條路上從不同的角度追求同樣的一件事,同樣的一個(gè)結(jié)果,可能是畫漫畫或者是了解人工智能和其他智能。這些人出于各種不同的原因,在人生早期就找到了讓自己快樂的事情,愿意把它當(dāng)做終生的事業(yè),也可能是他們足夠幸運(yùn),能夠找到了賺錢,又讓自己生活下去的一件事,我認(rèn)為所有的事情都很關(guān)鍵。

對(duì)我來說,心中的英雄或者榜樣非常關(guān)鍵。我長(zhǎng)大的時(shí)候,是披頭士樂隊(duì)正當(dāng)紅的時(shí)候,他們給了我非常大的啟發(fā),這種啟發(fā)并非他們的音樂,而是他們的創(chuàng)造性,每一次他們都可以推出新的專輯,每張專輯都不一樣。我花了很時(shí)間想他們?yōu)槭裁催@么有創(chuàng)造性。

在我的一生當(dāng)中,我都在追求這種創(chuàng)造性,我把從中學(xué)到的東西運(yùn)用在了科學(xué)工程上,科學(xué)家也可以像音樂創(chuàng)作者一樣具有創(chuàng)造性。這種領(lǐng)袖或者榜樣給了我?guī)砹朔浅4蟮牧α?,看到他們所做的事情,就鼓?lì)我也可以做到。

另外,我在一個(gè)小城鎮(zhèn)里長(zhǎng)大,在麻省理工學(xué)院讀了本科,當(dāng)時(shí)我認(rèn)為所有的教授都是神,我只是普通的人。但當(dāng)我到了一定程度的時(shí)候,發(fā)現(xiàn)他們也是人,他們能做到的,我也同樣可以做到。

總之,我覺得這兩件事非常重要,一方面讓我看到了創(chuàng)造性所能做到的事情,另一方面讓我看到了作為人能做到的事情。所以,我覺得很多像我這樣的人,就特別幸運(yùn),在整個(gè)一生當(dāng)中,在整個(gè)人生道路上都有這樣的一些鼓勵(lì),并且還能持續(xù)的進(jìn)行努力。

文廚:所以,不管是做科學(xué)研究還是畫漫畫,都要找到自己的真愛,執(zhí)著追求,樂在其中,并找到可以給到自己靈感和動(dòng)力的榜樣。

——————

從左至右依次是:Tom Mitchell教授、魯白教授、漫畫家蔡志忠和文廚。

嘉賓介紹:

蔡志忠:著名職業(yè)漫畫家,金馬獎(jiǎng)最佳卡通片獎(jiǎng),“金漫獎(jiǎng)”終身成就獎(jiǎng)獲得者,已有《莊子說》、《老子說》、《列子說》、《大醉俠》、《光頭神探》等100多部作品在30多個(gè)國家和地區(qū)以多種語種版本出版,銷量超過了3000萬冊(cè)。

Tom Mitchell:機(jī)器學(xué)習(xí)之父,卡內(nèi)基梅隆大學(xué)計(jì)算機(jī)科學(xué)學(xué)院機(jī)器學(xué)習(xí)系主任、教授,美國工程院院士,他在機(jī)器學(xué)習(xí)、人工智能、認(rèn)知神經(jīng)科學(xué)等領(lǐng)域卓有建樹,撰寫了機(jī)器學(xué)習(xí)方面最早的教科書之一《機(jī)器學(xué)習(xí)》,是機(jī)器學(xué)習(xí)領(lǐng)域的著名學(xué)者。

繼續(xù)閱讀與本文標(biāo)簽相同的文章

分享至:

你可能感興趣 換一換

分享到微信朋友圈 ×
打開微信,
使用“掃一掃”即可將網(wǎng)頁分享至朋友圈。